References
Parameters
- J. Wang, P. Cieplak and P. A. Kollman. How
well does a restrained electrostatic potential (RESP) model perform in
calcluating conformational energies of organic and biological
molecules?
J. Comput. Chem. 21, 1049-1074 (2000) [AMBER99] (DOI)
- W. D. Cornell, P. Cieplak, C. I. Bayly, I.
R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell
and P. A. Kollman. A Second Generation Force Field for the Simulation
of
Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117,
5179-5197 (1995) [AMBER94] (DOI)
- G. Moyna, H. J. Williams, R. J. Nachman,
and A. I. Scott. Conformation in solution and dynamics of a structurally constrained linear
insect kinin pentapeptide analogue. Biopolymers 49, 403-413
(1999) [AIB charges] (DOI)
- W. S. Ross and C. C. Hardin. Ion-induced
stabilization of the G-DNA quadruplex: Free energy perturbation studies.
J. Am. Chem. Soc. 116, 6070-6080 (1994) [Alkali Metal Ions]
(DOI)
- J. Aqvist. Ion-Water Interaction
Potentials Derived from Free Energy Perturbation Simulations. J. Phys. Chem. 94, 8021-8024
(1990) [Alkaline Earth Ions, radii adapted for AMBER combining
rule] (DOI)
- C. Oostenbrink, A. Villa, A.
E. Mark, W. F. van Gunsteren. A Biomolecular Force Field Based on the Free Enthalpy of
Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and
53A6. J. Comput. Chem. 25, 1656-1676 (2004) (DOI)
- G. A. Kaminski, R. A. Friesner, J.
Tirado-Rives, W.L. Jorgensen. Evaluation and Reparametrization of the
OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum
Chemical Calculations on Peptides. J. Phys. Chem. B. 105, 6474-6487
(2001) (DOI)
- A. D. MacKerell, et al. All-atom empirical
potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102,
3586–3616 [CHARMM22] (DOI)
- A. D. MacKerell, N. Banavali, N. Foloppe. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257–265 (2001) [CHARMM27] (DOI)
- W. L. Jorgensen, J. Chandrasekhar, J. D.
Madura, R. W. Impey, and M. L. Klein. Comparison of simple potential functions
for simulating liquid water. J. Chem. Phys. 79,
926-935 (1983) (DOI)
- W. L. Jorgensen and J. D. Madura.
Temperature and size dependence for Monte Carlo simulations of TIP4P
water. Mol. Phys. 56, 1381-1392 (1985) (DOI)
- W. L. Jorgensen and C. Jenson. Temperature
Dependence of TIP3P, SPC, and TIP4P Water from NPT Monte Carlo Simulations: Seeking
Temperatures of Maximum Density. J. Comput. Chem. 19,
1179-1186 (1998) (DOI)
- M. W. Mahoney and W. L. Jorgensen. A
five-site model for liquid water and the reproduction of the density
anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112,
8910-8922 (2000) (DOI)
- A.J. Hopfinger. Conformational Properties of Macromolecules. Academic Press, New York, NY (1973)
- L. Pauling. Chapter 11, in General
Chemistry, 3rd ed., W.H. Freeman Press, San Francisco, CA (1970)
- R. A. Engh, R. Huber. Accurate bond and
angle parameters for X-ray protein structure refinement.
Acta Cryst. A47, 392-400 (1991) (DOI)
- A. A. Chen and R. V. Pappu. Parameters of Monovalent Ions in the AMBER-99 Forcefield: Assessment of Inaccuracies and Proposed Improvements. J. Phys. Chem. B 111 (41), 11884-11887 (2007) (DOI)
- Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24 (16), 1999-2012 (2003) (DOI)
- E. J. Sorin and V. S. Pande. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys. J 88 (4), 2472-2493 (2005) (DOI)
- A. J. DePaul, E. J. Thompson, S. S. Patel, K. Haldeman and E. J. Sorin. Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. Nucl. Acid Res. 38 (14), 4856-4867 (2010) (DOI)
- H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. Hura, and T. Head-Gordon. Development of an improved four-site water model for biomolecular
simulations: TIP4P-Ew. J. Chem. Phys. 120 (20), 9665-9678 (2004) (DOI)
- H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The Missing Term in Effective Pair Potentials. J. Phys. Chem 91 (24), 6269-6271 (1987) (DOI)
- C. P. Kelly, C. J. Cramer, and D. G. Truhlar. Aqueous Solvation Free Energies of Ions and Ion−Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton. J. Phys. Chem. B 110 (32), 16066-16081 (2006) (DOI
- A. H. Mao and R. V. Pappu. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions. J. Chem. Phys. 137, 064104 (2012) (DOI)
- S. Cabani, P. Gianni, V. Mollica, and L. Lepori. Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution. J. Sol. Chem. 10, 563-595 (1981) (DOI)
Background
- D. Chander, J. D. Weeks and H. C. Andersen.
Van der Waals picture of liquids, solids, and phase transformations.
Science 220, p787 (1983) (DOI)
- M. O. Steinhauser. A molecular dynamics
study on universal properties of polymer chains in different solvent qualities. Part 1. A review of linear chain properties.
J. Chem. Phys. 122, 094901 (2005) (DOI)
- D. Frenkel and B. Smit. Understanding
Molecular Simulations, Second Edition: From Algorithms to Applications. Academic Press, San Diego, CA
(2002)
- J. E. Kohn, I. S. Millett, J.
Jacob, B. Žagrović, T. M. Dillon, N. Cingel, R. S. Dothager, S. Seifert, P.
Thiyagarajan, T. R. Sosnick, M. Z. Hasan, V. S. Pande, I.
Ruczinski, S. Doniach, K. W. Plaxco. Random-coil behavior and
the dimensions of chemically unfolded proteins.
Proc. Natl. Acad. Sci. USA 101, 12491-12496 (2004) (DOI)
- H. T. Tran and R. V. Pappu. Toward an
accurate theoretical framework for describing ensembles for proteins under strongly
denaturing conditions. Biophys. J. 91, 1868-1886 (2006) (DOI)
- H. Qian and J. A. Schellman. Helix-coil
theories: A comparative study for finite length polypeptides.
J. Phys. Chem. 96, 3987-3994 (1992) (DOI)
- H. R. Drew, R. M. Wing, T. Takano, C. Broka,
S. Tanaka, K. Itakura, and R. E. Dickerson. Structure of a
B-DNA dodecamer: conformation and dynamics. Proc. Natl. Acad. Sci. USA
78, 2179-2183 (1981) (PDF)
- A. Vitalis, N. A. Baker, and J. A. McCammon. ISIM: A Program for Grand Canonical Monte Carlo
Simulations of the Ionic Environment of Biomolecules. Mol. Simul.
30 (1), 45-61 (2004) (DOI)
- D. Kofke and E. D. Glandt. Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble.
Mol. Phys. 64 (6), 1105-1131 (1988) (DOI)
- W. R. P. Scott, A. E. Mark, and W. F. van Gunsteren. On using time-averaging restraints in molecular dynamics simulation.
J. Biomol. NMR 12 (4), 501-508 (1998) (DOI)
- F. Wang and D. P. Landau. Efficient, multiple-range random walk algorithm to calculate the density of states.
Phys. Rev. Lett., 86 (10), 2050-2053 (2001) (DOI)
- F. Calvo. Sampling along reaction coordinates with the Wang-Landau method.
Mol. Phys., 100 (21), 3421-3427 (2002) (DOI)
- C. Zhou and R. N. Bhatt. Understanding and improving the Wang-Landau algorithm.
Phys. Rev. E, 72 (2), 025701(R) (2005) (DOI)
- R. E. Belardinelli and V. D. Pereyra. Fast algorithm to calculate density of states.
Phys. Rev. E, 75 (4), 046701 (2007) (DOI)
- A. Vitalis and A. Caflisch. Equilibrium sampling approach to the interpretation of electron density maps.
Structure, 22 (1), 156-167 (2014) (DOI)
- B. Roux. The calculation of the potential of mean force using computer simulations.
Comp. Phys. Comm., 91 (1-3), 275-282 (1995) (DOI)
- C. C. Lee, R. H. Walters, and R. M. Murphy. Reconsidering the mechanism of polyglutamine peptide aggregation.
Biochemistry, 46 (44), 12810-12820 (2007) (DOI)
- S. Chen, F. A. Ferrone, and R. Wetzel. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation.
Proc. Natl. Acad. Sci. USA, 99 (18), 11884-11889 (2002) (DOI)
- A. Blondel and M. Karplus. New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: Elimination of singularities.
J. Comput. Chem., 17 (9), 1131-1142 (1996) (DOI)
- D. Hamelberg, J. Mongan, and J. A. McCammon. Accelerated molecular dynamics: A promising and efficient simulation
method for biomolecules.
J. Chem. Phys. 120 (24), 11919-11929 (2004) (DOI)
- C. Esposito and A. Vitalis. Precise estimation of transfer free energies for ionic species between similar media.
Phys. Chem. Chem. Phys. 20 (42), 27003-27010 (2018) (DOI)
Random seeds
- W. H. Press, S. A. Teukolsky, W. T. Vetterling,
B. P. Flannery. Numerical Recipes in Fortran 90: The Art of Parallel Scientific
Computing, Volume 2 of Fortran Numerical Recipes, Second Edition.
Cambridge University Press, New York (1996)
- G. Marsaglia and W. W. Tsang. 2000. A
simple method for
generating gamma variables. ACM Trans. Math. Softw. 26, 363-372
(2000) (DOI)
Monte Carlo methods and Metropolis algorithm
- N. Metropolis, A. W. Rosenbluth,
N. M. Rosenbluth, A. N. Teller, and E. Teller. Equation of state
calculations by fast computing machines.
J. Chem. Phys. 21, 1087-1092 (1953) (DOI)
- A. Vitalis and R. V. Pappu. Methods
for Monte Carlo simulations of biomacromolecules. Annu. Rep. Comput. Chem. 5, 49-76
(2009) (DOI).
- D. Frenkel and B. Smit. Understanding
Molecular Simulations, Second Edition: From Algorithms to Applications. Academic Press, San Diego, CA
(2002)
Molecular, Langevin, and Brownian dynamics
- M. Karplus and J. A. McCammon. Molecular dynamics simulations of biomolecules.
Nat. Struct. Biol. 9, 646- 652 (2002) (DOI)
- J. M. Haile. Molecular dynamics
simulation: Elementary methods. John Wiley and Sons, New York, NY (1992)
- D. L. Ermak and J. A. McCammon.
Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69, 1352-1360 (1978)
(DOI).
- W. F. van Gunsteren and H. J. C.
Berendsen. Algorithms for Brownian dynamics. Mol. Phys. 45, 637-647 (1982) (DOI)
- S. He and H. A. Scheraga.
Macromolecular conformational dynamics in torsional angle space. J. Chem. Phys. 108 , 271-300 (1998)
(DOI)
- M. G. Paterlini and D. M. Ferguson.
Constant temperature simulations using the Langevin equation with velocity Verlet
integration. Chem. Phys. 236, 243-252 (1998) (DOI)
- R. D. Skeel and J. A. Izaguirre. An
impulse integrator for Langevin dynamics. Mol. Phys. 100, 3885-3891 (2002) (DOI)
- B. Hess, H. Bekker, H. J. C. Berendsen and
J. G. E. M. Fraaije. LINCS: A linear constraint solver for molecular simulations.
J. Comput. Chem. 18 (12), 1463-1472 (1997) (DOI)
- J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys. 23, 327-341 (1977) (DOI)
- S. Miyamoto and P. A. Kollman. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13 (8), 952-962 (1992) (DOI)
- H. C. Andersen. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations.
J. Comp. Phys. 52 (1), 24-34 (1983) (DOI)
- P. Gonnet. P-SHAKE: A quadratically convergent SHAKE in O(N2). J. Comp. Phys. 220 (2), 740-750 (2007)
(DOI)
- E. Vanden-Eijnden and G. Ciccotti. Second-order integrators for Langevin equations with holonomic constraints.
Chem. Phys. Lett. 429 (1-3), 310-316 (2006) (DOI)
- A. K. Mazur. Quasi-Hamiltonian equations of motion for internal coordinate molecular dynamics of polymers.
J. Comput. Chem. 18 (11), 1354-1364 (1997) (DOI)
- J. Chen, W. Im, C. L. Brooks III. Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
J. Comput. Chem. 26 (15), 1565-1578 (2005) (DOI)
- A. Vitalis and R. V. Pappu. A simple molecular mechanics integrator in mixed rigid body and dihedral angle space.
J. Chem. Phys., 141 (3), 034105 (2014) (DOI)
- M. Bacci, A. Vitalis, and A. Caflisch. A molecular simulation protocol to avoid sampling redundancy and discover new states. Biochim. Biophys. Acta, 1850 (5), 889-902 (2015) (DOI)
- N. Arizumi and S. D. Bond. On the estimation and correction of discretization error in molecular dynamics averages. Appl. Num. Math., 62 (12), 1938-1953 (2012) (DOI)
Mixed molecular dynamics/Monte Carlo
- F. Guarnieri and W. C. Still. A Rapidly
Convergent Simulation
Method: Mixed Monte Carlo/Stochastic Dynamics. J. Comput. Chem. 15,
1302-1310 (1994) (DOI)
- M. O. Steinhauser. A molecular dynamics study on universal properties of polymer chains in different solvent qualities. Part I. A review of linear chain properties. J. Chem. Phys. 122, 094901 (2005)
(DOI)
Minimizers
- J. Nocedal. Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computation 35, 773-782 (1980) (PDF).
- C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations. IMA J. Appl. Math. 6 (1), 76-90 (1970) (DOI)
- D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24 (111), 647-656 (1970) (PDF)
- R. Fletcher. A New Approach to Variable Metric Algorithms. The Computer Journal 13 (3), 317-322 (1970) (DOI)
- D. Goldfarb. A family of variable-metric methods derived by variational means. Math. Comput. 24, 23-26 (1970) (DOI)
- R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Computer Journal 7 (2), 149-155 (1964) (DOI)
- E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées. Revue Française d’Informatique et de Recherche Opérationnelle, 16, 35-43 (1969). (PDF)
Periodic boundary conditions
- G. Makov and M. C. Payne. Periodic boundary
conditions in ab
initio calculations. Phys. Rev. B 51, 4014-4022 (1995) (DOI)
Particle-mesh Ewald summation
- T. Darden, D. York and L. Pedersen.
Particle
mesh Ewald-an NlogN
method for Ewald sums in large systems. J. Chem. Phys 98, 10089–10092
(1993) (DOI)
- U. Essmann, L. Perera, M.L. Berkowitz, T.
Darden, H. Lee and L.
Pedersen. A smooth particle mesh Ewald method. J. Chem. Phys 103,
8577–8593 (1995) (DOI)
- H. G. Petersen. Accuracy and
efficiency
of the particle
mesh Ewald method. J. Chem. Phys. 103, 3668-3679 (1995) (DOI)
- P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 369 (3), 253-287
(1921) (DOI)
Spherical-cutoff methods
- P. J. Steinbach and B. R. Brooks.
New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem. 15, 667-683 (1994)
(DOI)
- R. Garcia-Pelayo. Distribution of distance in the spheroid. Journal of Physics A: Mathematical and General 38, 3475-3482
(2005) (DOI)
Generalized reaction-field methods
- I. G. Tironi, R. Sperb, P. E. Smith, and W. F. van Gunsteren.
A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102, 5451-5459 (1995).
(DOI)
Thermostats
- H. J. C. Berendsen, J. P. M. Postma. W. F. van Gunsteren, A. Dinola, and
J. R. Haak. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 81, 3684–3690 (1984)
(DOI)
- H. C. Andersen. Molecular dynamics at
constant pressure and/or temperature. J. Chem. Phys. 72, 2384-2393 (1980)
(DOI)
- G. Bussi, D. Donadio, and M. Parrinello.
Canonical sampling through velocity-rescaling. J. Chem. Phys. 126, p014101 (2007) (DOI)
- S. C. Harvey, R. K.-Z. Tan, and T. E. Cheatham III.
The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy
equipartition. J. Comput. Chem. 19 (7) 726-740 (1998) (DOI)
- M. Lingenheil, R. Denschlag, R. Reichold and P. Tavan.
The “hot-solvent/cold-solute” problem revisited. J. Chem. Theory Comput. 19 (7) 1293-1306 (2008) (DOI)
- G. J. Martyna, D. J. Tobias, and M. L. Klein.
Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101 (5), 4177-4189 (1995)
(DOI)
- H. A. Stern. Simple algorithm for isobaric-isothermal molecular dynamics. J. Comput. Chem. 25 (5), 749-761 (2004)
(DOI)
- S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52 (2), 255-268 (1984)
(DOI)
- W. G. Hoover. Canonical dynamics: Equilibrium phase space distributions. Phys. Rev. A 31 (3), 1695-1697 (1985)
(DOI)
Ring pucker
- H. Sklenar, D. Wustner, and R. Rohs. Using Internal and Collective
Variables in Monte Carlo Simulations of Nucleic Acid Structures: Chain
Breakage/Closure Algorithm and Associated Jacobians. J. Comput. Chem.
27, 309-315 (2006). (DOI)
Concerted rotation
- G. Favrin, A. Irbäck, and F. Sjunnesson.
Monte Carlo update for chain molecules: Biased Gaussian steps in torsional space.
J. Chem. Phys. 114, 8154-8158 (2001). (DOI).
- A. R. Dinner. Local deformations of polymers with nonplanar rigid main-chain internal coordinates.
J. Comput. Chem. 21, 1132-1144 (2000). (DOI)
- J. P. Ulmschneider and W. L. Jorgensen.
Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral
angles using concerted rotations and Gaussian bias. J. Chem. Phys. 118, 4261-4271 (2002).
(DOI)
- L. R. Dodd, T. D. Boone, and D. N. Theodorou. A
concerted rotation algorithm for atomistic Monte Carlo simulation of
polymer melts and glasses. Mol. Phys. 78, 961–96 (1993) (DOI)
Analysis of secondary structure segments
- G.N. Ramachandran, C. Ramakrishnan, and V.
Sasisekharan.
Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7,
95-99 (1963).
NetCDF file format
- Official website for Unidata's NetCDF format (link)
Protein and nucleic acid geometries
- R. A. Engh and R. Huber. Accurate bond and
angle parameters for X-ray
protein structure refinement. Acta Cryst. A47, 392-400 (1991) (DOI)
- G. Parkinson, J. Vojtechovsky, L. Clowney, A. T. Brünger, and H. M. Berman.
New parameters for the refinement of nucleic acid-containing structures. Acta Cryst., D52, 57-64 (1996)
(DOI)
WCA potential
- J. D. Weeks, D. Chandler, and H. C.
Andersen. Role of Repulsive
Forces in Determining the Equilibrium Structure of Simple Liquids. J.
Chem. Phys. 54, 5237 (1971). (DOI).
- T. Boublik. The Gaussian overlap model
again. Mol. Phys. 67, 1327-1336 (1989). (DOI)
Implicit Solvent Models
- A. Vitalis and R. V. Pappu.
ABSINTH: A new continuum solvation model for simulations of
polypeptides in aqueous solutions. J. Comput. Chem.
30,
673-699 (2009). (DOI)
- Z. A. Arnon, A. Vitalis, A. Levin, T. C. T. Michaels, A. Caflisch, T. P. J. Knowles, L. Adler-Abramovich, and E. Gazit.
Dynamic microfluidic control of supramolecular peptide self-assembly. Nat. Commun.
7,
13190 (2016). (DOI)
- J.-M. Choi, and R. V. Pappu.
Improvements to the ABSINTH Force Field for Proteins Based on Experimentally Derived Amino Acid Specific Backbone Conformational Statistics.
J. Chem. Theor. Comput. 15(2), 1367-1382 (2019). (DOI)
- J.-R. Marchand, T. Knehans, A. Caflisch, and A. Vitalis.
An ABSINTH-based protocol for predicting binding affinities between proteins and small molecules. J. Chem. Inf. Model.
XX,
XXXX-XXXX (2020). (DOI)
- T. Lazaridis and M. Karplus. Effective energy function for proteins in solution. Prot. Struct. Func. Bioinf. 35 (2), 133-152 (1999) (DOI)
DSSP
- W. Kabsch and C. Sander. Dictionary of
protein secondary
structure: pattern recognition of hydrogen-bonded and geometrical
features. Biopolymers 22, 2577-2637 (1983). (website).
Replica exchange Methodology
- R. H. Swendsen and J. S. Wang. Replica
Monte Carlo simulation of spin glasses. Physical Review Letters 57, 2607-2609 (1986). (DOI)
- Y. Sugita and Y. Okamoto. Replica-exchange molecular dynamics method for protein folding.
Chem. Phys. Lett. 314 (1-2), 141-151 (1999) (DOI)
- Y. Okamoto. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J Mol. Graphics and Modelling, 22 (5), 425-439 (2004) (DOI)
MPI refs
- Official website of OpenMPI (link)
Special references for certain output and analysis features
- B. Žagrović. Helical signature motif in the fiber diffraction patterns of random
walk chains. Mol. Phys. 105 (10), 1299-1306 (2007) (DOI)
- F. Avbelj and R. L. Baldwin. Role of backbone solvation and electrostatics in generating preferred peptide backbone conformations: Distributions of phi. Proc. Natl. Acad. Sci. USA 100 (10), 5742-5747 (2003) (DOI)
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient
Data Clustering Method for Very Large Databases. SIGMOD '96 Proceedings (DOI)
- A. Vitalis and A. Caflisch. Efficient Construction of Mesostate Networks from Molecular Dynamics Trajectories. J. Chem. Theory Comput. 8 (3), 1108-1120 (2012) (DOI)
- N. Blöchliger, A. Vitalis, and A. Caflisch. A scalable algorithm to order and annotate continuous observations reveals the metastable states visited by dynamical systems. Comput. Phys. Comm. 184 (11), 2446-2453 (2013) (DOI)
- O. Borůvka. "O jistém problému minimálním" and "Příspěvek k řešení otázky ekonomické stavby elektrovodních sítí". translated in Discr. Math. 233 (1–3), 3–36 (2001) (DOI of translation)
- V. Jarník. "O jistém problému minimálním". Práce Moravské Přírodovědecké Společnosti, 6, 57–63 (1930) or R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36, 1389–1401 (1957).
- J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proc. Amer. Math. Soc., 7 (1), 48–50 (1956)
(DOI)
- W. Humphrey, A. Dalke, and K. Schulten. VMD - Visual Molecular Dynamics. J. Molec. Graphics 14, 33-38 (1996) (DOI, webpage)
- E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25 (13), 1605-1612 (2004) (DOI, webpage)
- M. Senne, B. Trendelkamp-Schroer, A. S. J. S. Mey, C. Schütte, and F. Noé. EMMA: A Software Package for Markov Model Building and Analysis. J. Chem. Theory Comput. 8 (7), 2223-2238 (2012) (DOI)
- S. V. Krivov and M. Karplus. One-dimensional free-energy profiles of complex systems: progress variables that perserve the barriers. J. Phys. Chem. B 110 (25), 12689-12698 (2006) (DOI)
- M. Seeber, A. Felline, F. Raimondi, S. Muff, R. Friedman, F. Rao, A. Caflisch, and F. Fanelli. Wordom: a user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. J. Comput. Chem. 32 (6), 1183–1194 (2011) (DOI)
- S. Lifson and A. Roig. On the theory of helix-coil transition in polypeptides. J. Chem. Phys. 34 (6), 1963-1974 (1961) (DOI)
- I. T. Joliffe. Principal Component Analysis, Second Edition, Springer Verlag, New York (2002) (DOI)
- L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72 (23), 3634-3637 (1994) (DOI)
- Y. Naritomi and S. Fuchigami. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions. J. Chem. Phys. 134 (6), 065101 (2011) (DOI)
- N. Blöchliger, A. Caflisch, and A. Vitalis. Weighted distance functions improve analysis of high-dimensional data: Application to molecular dynamics simulations. J. Chem. Theory Comput. 11 (11), 5481-5492 (2015) (DOI)
- J. H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte, and F. Noé. Markov models of molecular kinetics: Generation and validation. J. Chem. Phys., 134 (17), 174105 (2011) (DOI)
- F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich , L. and T. R. Weikl. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. USA, 106 (45), 19011-19016 (2009) (DOI)
- A. Berezhkovskii, G. Hummer, and A. Szabo.. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys., 130 (20), 205102 (2009) (DOI)
- G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. Pande.. Progress and challenges in the automated construction of Markov state models for full protein systems. J. Chem. Phys., 131 (12), 124101 (2009) (DOI)
- T. Zhou and A. Caflisch. Distribution of reciprocal of interatomic distances: A fast structural metric. J. Chem. Theory Comput., 8 (8), 2930-2937 (2012) (DOI)
- M. Bacci, A. Caflisch, and A. Vitalis. On the removal of initial state bias from simulation data. J. Chem. Phys., 150 (10), 104105 (2019) (DOI)
- A. Vitalis. An improved and parallel version of a scalable algorithm for analyzing time series data. ArXiv (June 2020) (ArXiv)
- F. Cocina, A. Vitalis, and A. Caflisch. SAPPHIRE-based clustering. J. Chem. Theory Comput., 16 (10), 6383-6396 (2020) (DOI)
Application examples using CAMPARI or its predecessors (list updated until ca. 2013)
- H. T. Tran, X. Wang, and R. V. Pappu. Reconciling Observations of Sequence-Specific Conformational Propensities with the Generic Polymeric Behavior of Denatured Proteins. Biochemistry 44 (34), 11369-11380 (2005) (DOI)
- H. T. Tran and R. V. Pappu. Toward an accurate theoretical framework for describing ensembles for proteins under strongly denaturing conditions.
Biopys. J. 91, 1868-1886 (2006) (PDF)
- A. Vitalis, X. Wang, and R. V. Pappu. Quantitative characterization of intrinsic disorder in polyglutamine: insights from analysis based on polymer theories.
Biophys. J. 93 (6), 1923-1937 (2007) (DOI)
- A. Vitalis, X. Wang, and R. V. Pappu. Atomistic Simulations of the Effects of Polyglutamine Chain Length and Solvent Quality on Conformational Equilibria and Spontaneous Homodimerization. J. Mol. Biol. 384 (1), 279-297 (2008) (DOI)
- A. Vitalis, N. Lyle, and R. V. Pappu. Thermodynamics of β-Sheet Formation in Polyglutamine. Biophys. J. 97 (1), 303-311 (2009) (DOI)
- T. E. Williamson, A. Vitalis, S. L. Crick, and R. V. Pappu. Modulation of Polyglutamine Conformations and Dimer Formation by the N-Terminus of Huntingtin. J. Mol. Biol. 396 (5), 1295-1309 (2010) (DOI)
- M. A. Wyczalkowski, A. Vitalis, and R. V. Pappu. New Estimators for Calculating Solvation Entropy and Enthalpy and Comparative Assessments of Their Accuracy and Precision. J. Phys. Chem. B 114 (24), 8166-8180 (2010) (DOI)
- A. H. Mao, S. L. Crick, A. Vitalis, C. L. Chicoine, and R. V. Pappu. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl. Acad. Sci. USA 107 (18), 8183-8188 (2010) (DOI)
- A. Vitalis and A. Caflisch. Micelle-Like Architecture of the Monomer Ensemble of Alzheimer’s Amyloid-β Peptide in Aqueous Solution and Its Implications for Aβ Aggregation. J. Mol. Biol. 403 (1), 148-165 (2010) (DOI)
- R. Halfmann, S. Alberti, R. Krishnan, N. Lyle, C. W. O'Donnell, O. D. King, B. Berger, R. V. Pappu, and S. Lindquist. Opposing Effects of Glutamine and Asparagine Govern Prion Formation by Intrinsically Disordered Proteins. Mol. Cell 73, 72-84 (2011) (DOI)
- A. Vitalis and A. Caflisch. 50 Years of Lifson–Roig Models: Application to Molecular Simulation Data. J. Chem. Theory Comput. 8 (1), 363-373 (2012) (DOI)
- R. K. Das, S. L. Crick, and R. V. Pappu. N-Terminal Segments Modulate the α-Helical Propensities of the Intrinsically Disordered Basic Regions of bZIP Proteins. J. Mol. Biol. 416 (2), 287-299 (2012) (DOI)
- A. Radhakrishnan, A. Vitalis, A. H. Mao, A. T. Steffen, and R. V. Pappu. Improved Atomistic Monte Carlo Simulations Demonstrate That Poly-l-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks. J. Phys. Chem. B 116 (23), 6862-6871(2012) (DOI)
- R. Scalco and A. Caflisch. Ultrametricity in protein folding dynamics. J. Chem. Theory Comput. 8 (5), 1580-1588 (2012) (DOI)
- W. Meng, N. Lyle, B. Luan, D. P. Raleigh, and R. V. Pappu. Experiments and simulations show how long-range contacts can form in expanded unfolded proteins with negligible secondary structure. Proc. Natl. Acad. Sci. USA 110 (6), 2123-2128 (2013) (DOI)
- R. K. Das and R. V. Pappu. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl. Acad. Sci. USA 110 (33), 13392-13397 (2013) (DOI)
- N. Lyle, R. K. Das, and R. V. Pappu. A quantitative measure for protein conformational heterogeneity. J. Chem. Phys. 139 (12), 121907 (2013) (DOI)
- A. Magno, S. Steiner, and A. Caflisch. Mechanisms and kinetics of acetyl-lysine binding to bromodomains. J. Chem. Theory Comput. 9 (9), 4225-4232 (2013) (DOI)